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Abstract
We study the motion of a single polymer chain settling under gravity in an
ensemble of periodic, cellular flow fields, which are steady in time. The
molecule is an elastic dumbbell composed of two beads connected by a
nonbendable Hookean spring. Each bead is subject to a Stokes drag and a
Brownian force from the flow. In the absence of particle inertia, the molecule
settles out at a rate which depends on three parameters: the particle velocity in
a fluid at rest, Vg, the spring constant, B, and the diffusion coefficient, D. We
investigate the dependence of the molecule settling velocity on B, for fixed Vg

and D. It is found that this velocity strongly depends on B and it has a minimum
value less than Vg. We also find that the molecule is temporarily trapped at
fixed points for certain values of the parameters. We analyse one fixed point
in detail and conclude that its stability is the main factor which contributes to
slowing down the settling process.

PACS numbers: 92.10.We, 82.35.Lr, 05.60.−K

1. Introduction

In this paper, we investigate numerically the motion of a single polymer chain in the presence
of gravity as it moves through a convective pattern of rolls. This study is motivated by previous
studies related to the motion of polymer chains in elongational or rotational flows [1, 2], in
which it was stated that a polymer chain approaching a stagnant point in pure elongational
flows tends to elongate while its residence time, tres, diverges. In contrast, a polymer chain
moving in pure rotational flow has a tendency to rotate without deformation.

Several flows of practical interest consist of a mixture of both rotational and elongational
components and the resulting transport properties of polymer chains will be affected by the
particular structure of the velocity field.
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Thus, in the case of a polymer chain settling under gravity in the presence of a convective
flow it may be speculated that its settling motion will slow down in the vicinity of a stagnant
point. As a consequence, the average settling velocity of such a molecule could be smaller
than that in a fluid at rest. This reduction in the terminal velocity will in general depend on
the size of the molecule in view of its relation with the molecule relaxation time. Therefore,
it appears that sedimentation in a convective pattern of rolls may induce polymer segregation
by size and that is the practical importance of this study.

In a general context, the motion of particles settling under gravity in a given flow field is
a subject not only intricate but interesting as well. This problem has captured the attention of
investigators in many areas of engineering, meteorology and oceanography. Similar problems
may be found in the settling of particles in colloidal suspensions [3], in the motion of bubbles
in liquid reservoirs [4], in the dynamical behaviour of heavy markers [5] and in several other
flows of engineering interest.

The simplest problem involving sedimenting particles is that of noninteracting heavy
particles drifting down in a quiescent fluid [6]. Assuming that the particles start at rest, they
are accelerated downwards by the action of gravity but they asymptotically reach a stationary
state in which the driving force (gravity) is balanced by the dissipative force (viscous drag).
The particle velocity is then constant, its value depending on several parameters such as the
particle size and mass, the fluid viscosity and the value of the acceleration due to gravity.

The average settling velocity may be strongly modified if the particle settles in the presence
of flow structures such as eddies or convection patterns. For example, in flow regions with
upward velocities the gravity force may be balanced by the viscous drag and particles could be
suspended indefinitely, remaining trapped at an equilibrium point or moving in closed orbits.
On the other hand, if a heavy particle moves in flow regions with downward velocities, gravity
and drag forces act in the same direction leading to an enhanced settling process with a settling
velocity larger than in the quiescent fluid.

A simple flow field which reproduces the main properties of a convective pattern of rolls
is given by the stream function [9]:

ψ(x, y) = (Uo/k) sin kx sin ky (1)

which consists of a periodic array of counterrotating eddies with a characteristic velocity, Uo,
and the periodicity of the cell, 2π/k. This flow field has been used extensively to represent
the main features of particle motion in flows with recirculating zones such as those in thermal
convection when a layer of fluid is heated from below or in Taylor–Couette instability where
a periodic pattern of toroidal vortices appear for some angular velocities of the internal
cylinder [7].

In this flow field, the falling of single spherical particles was studied first by Stommel [8]
and later by Maxey [9, 10]. In an early approach Stommel showed that the vertical motion of
a particle without inertia may be strongly influenced by the flow field given by equation (1).
Indeed, he showed that particles may remain suspended indefinitely, depending on the ratio
between their terminal velocity in a fluid at rest and the characteristic fluid velocity Uo. In
this case, the convective flow forces the particles to move upwards in regions of strong upflow.
Then, a sort of dynamical equilibrium between gravity and the Stokes drag is reached and the
particle moves in closed orbits in a single cell.

In the same flow field, Maxey [10] considered the settling of heavy particles for which the
inertia and added mass term are not negligible. He showed that particles with non-negligible
inertia are never suspended in the flow field and they settled more rapidly than in a fluid at rest.
Also he shows that particles have a tendency to cumulate in isolated asymptotic trajectories.
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In this work, we are interested in the motion of a simple polymer chain as it falls
under gravity in the flow field given by equation (1). Two different types of behaviour may
be expected: elongation and slowing down of the molecule as it approaches points with
coordinates (kx, ky) = (mπ, nπ), where the flow is purely elongational, and rotation without
deformation around points (kx, ky) = ((m + 1/2)π, (n + 1/2)π), where the flow is purely
rotational. The goal is to determine the interaction between the internal structure of the
molecule and the flow field and how it modifies the rate at which the molecule settles under
gravity.

A polymer molecule is usually represented as a long chain of elemental units called
monomers. Several models have been proposed to describe the behaviour of polymer chains
in a given solvent. One of the most widely used is the Rouse model which assumes that a linear
polymer chain can be represented as a set of N beads joined by springs [11]. The simplest
example of a Rouse chain, called the ‘elastic dumbbell’, corresponds to N = 2. This model,
a crude but useful representation of a polymer molecule, has been successful in describing
many of the rheological properties of real polymers, such as orientability and stretchability or
migration effects in shear flows [12].

To achieve a simple model of the dynamical equation of the dumbbell, we consider
that the flow field is not affected by the presence of the molecule. In addition, we neglect
molecule–molecule interactions considering low concentration of particles. The fluid force
on each bead, considered to be small enough so that we can neglect couples due to the local
shear, was calculated ignoring the presence of the other bead. Fluid forces acting on each
bead are the viscous frictional force, or Stokes drag, and the Brownian force provided by the
solvent molecules. In this first approach particle inertia will be neglected.

More details of the dumbbell model, together with the complete set of dynamical
equations, are presented in section 2. We will show that the dynamics of the molecule is
governed by three dimensionless parameters: the spring stiffness, B, the diffusion coefficient,
D, and the Stokes velocity of a single particle, Vg .

In section 3, we present some examples of dumbbell trajectories. The dependence of the
average settling velocities, 〈V 〉, on B,Vg and D is studied, and the conditions for which the
molecule settles out slower or faster than in a fluid at rest are analysed.

The main features of the results are discussed in section 4. We show that the decrease
in the average settling velocity is due to the existence of equilibrium points at which the
dumbbells may be trapped for a certain time. Finally, concluding remarks are given in
section 5.

2. Equations for dumbbell motion

In figure 1, we show a schematic view of the dumbbell molecule immersed in a fluid. Two
beads of radius a are connected at their centres by a Hookean spring of stiffness B ′. The
hydrodynamic force on one of the beads due to its motion relative to the fluid is the Stokes
drag: 6πaµ(u − v), where u is the fluid velocity at the centre of the bead, v is the velocity of
the bead and µ the fluid viscosity.

Following the classical formulation of the dumbbell model [11], we assume that the solvent
exerts on the beads a Brownian force given by

√
2D′η where η describes a normalized white

noise process for which 〈η(t)〉 = 0 and D′ is the noise density (or the diffusion coefficient)
for the single bead in bulk fluid. Finally, we also consider that a bead under gravity in a fluid
at rest settles out with a terminal velocity Vg .

The sum of all the forces is set to zero in order to derive the noninertial equations of
motion for the molecule. For each bead labelled 1 and 2 we obtain
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′

Figure 1. Schematic view of the elastic dumbbell in the (x, y)-plane of the flow. Arrows indicate
the instantaneous balance of forces on one of the spheres.

v1 = u(r1) +
B ′

6πaµ
Q +

√
2D′η1 +

mg
6πaµ

(2)

v2 = u(r2) − B ′

6πaµ
Q +

√
2D′η2 +

mg
6πaµ

(3)

where Q = r2 − r1 is the distance between beads, m the bead mass and g the gravitational
acceleration constant. The flow velocity, u, is derived from equation (1) which corresponds
to a periodic arrangement of eddies with velocity components given by

ux = ∂ψ

∂y
= Uo sin kx cos ky (4a)

uy = −∂ψ

∂x
= −Uo cos kx sin ky. (4b)

From here on we use Uo and 1/k as the characteristic scales to nondimensionalize the
equations of motion. The corresponding nondimensional equations, assuming that gravity is
aligned with the positive y-axis, are

vx1 = sin x1 cos y1 + B(x2 − x1) +
√

2Dη1x

vy1 = −cos x1 sin y1 + B(y2 − y1) +
√

2Dη1y + Vg

vx2 = sin x2 cos y2 − B(x2 − x1) +
√

2Dη2x

vy1 = −cos x2 sin y2 − B(y2 − y1) +
√

2Dη2y + Vg

(5)

where B and D are the nondimensional spring constant and diffusion coefficient, respectively,
and Vg = mg/6πaµUo the single-particle settling velocity in a fluid at rest.

Before describing the settling dynamics of the dumbbell in the general case, let us consider
two limit situations for which equations (5) are considerably simplified.

The first case corresponds to B = 0. Setting the spring constant to zero implies that beads
are disconnected and, therefore, the velocity of any of them is described by the following
equations:

vx = sin x cos y +
√

2Dηx vy = −cos x sin y +
√

2Dηy + Vg. (6)
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Figure 2. Trajectories of single particles settling under gravity in the cellular flow field for
Vg = 0.5: +, static equilibrium point; ——, particle path; - - - -, bounding trajectory for the
trapping region. Arrows indicate the circulation in each cell.

It can be seen that the settling dynamics of a single particle is governed by the sum of the
local velocity of the fluid, the Brownian contribution and the settling velocity in a fluid at rest.
This problem, with the diffusion term set equal to zero, was first studied by Stommel [8] and
later revisited by Maxey et al [9]. In view of its relevance for the present work, we summarize
below the most important results obtained by these authors.

Stommel shows that particle suspension occurs only for values of Vg in the range
0 < Vg < 1. From equations (6) it can be seen that if Vg > 1 then the fluid velocity
never exceeds Vg and the particle velocity is positive at all times and thus particles settle out.
Figure 2 shows some sample particle trajectories for Vg = 0.5. Suspended particles move
around closed paths encircling an equilibrium point. The trapping region is bounded by a
particle path (shown with a dashed line) that joins the cell boundary. Outside this region
particles settle out.

Maxey pointed out that the fraction of the particles in trapping regions will be suspended
indefinitely but the rest of the particles will settle out with velocities larger than Vg .

When the diffusion term
√

Dη is considered in equations (6), the single-particle dynamics
acquires a nondeterministic character. The motion does not occur in closed or open paths,
in contrast, the particle moves in irregular paths because of the Brownian contribution to the
particle velocity. The general picture that emerges is that of a particle that spends part of the
time suspended in the trapping regions and part of the time in zones with a positive settling
velocity larger than Vg . In this condition, the distinction between suspended and sedimenting
particles disappears and all the particles settle out with an average settling velocity equal
to Vg.

The second limiting case we will analyse is B → ∞. In this limit the spring term in
equation (5) becomes dominant and therefore, the drag is not enough to maintain the beads
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separated and the molecule collapses. It is convenient to rewrite the equations in terms of
R = (X, Y ) = (r2 + r1)/2, V = (Vx, Vy) = (v2 + v1)/2, the position and velocity of the centre
of mass, respectively, as

Vx = ux(r2) + ux(r1)

2
+

√
Dηx Vy = uy(r2) + uy(r1)

2
+

√
Dηy + Vg. (7)

The collapse of the molecule implies that r2 → r1 = R and equations (7) result in

Vx = sin X cos Y +
√

Dηx Vy = −sin Y cos X +
√

Dηy + Vg. (8)

These equations are equivalent to those obtained for B = 0 except for the diffusion term
divided by 2. Thus, when B → ∞ the motion of the centre of mass of the dumbbell is similar
to that of a single particle. Therefore, in the presence of diffusion, the average velocity of the
centre of mass must be equal to Vg .

In conclusion, at the limiting values of B the molecule behaves as a single particle and
therefore, deviations from this behaviour may be only expected for intermediate values of this
parameter. Let us now consider briefly the general case: 0 < B < ∞. For these values
of B, equations (5) show the effect of the spring term. If the beads are close to one another
the contribution of the spring term to the bead velocity is negligible and the total velocity is
mainly due to the flow and the fluid settling velocity, Vg. In contrast, if the beads are separated
by a distance comparable to the cell length, π , this term dominates and the molecule evolves
in order to minimize its length. The first phenomenon occurs when the dumbbell moves near
the centre of a cell where the molecule experiences low stresses. The second one occurs near
the separatrix between two cells where the stresses are large.

As a consequence, for fixed D and Vg, the settling motion of the molecule through the
cellular flow is controlled by the spring constant, a situation which will lead to a settling
dynamics very different from that encountered for single rigid particles of the type studied by
Maxey et al [10].

3. Numerical results

It is expected that the dynamics of the molecule will be affected by the value of the spring
constant and that the average settling velocity of the centre of mass of the molecule, 〈Vy〉,
shows some dependence on this parameter. In order to study this dependence, we calculate
some trajectories of the molecule for given values of the parameters B,Vg and D.

Equations (5) were numerically integrated by using a second-order Runge–Kutta method
with a step size �t = 0.01. Each bead of the molecule was located at a random initial position
in the square [0, 2π] × [0, 2π]. Then, the position of the centre of mass and its instantaneous
velocity components Vx(t) and Vy(t) were calculated. For a large number of molecules, N,
the average settling velocity of the centre of mass, 〈V 〉 = 〈Vy〉, was obtained from the time
average:

〈V 〉 = 1

N

N∑
i=1

1

T

∫ T

0
V i

y (t) dt (9)

where i indexes the molecule number and T is a large end-time that depends on the parameters
B,D and Vg . It was considered that 〈V 〉 has reached its stationary value if 〈δV 〉 < 10−5〈V 〉
where 〈δV 〉 is the statistical deviation of Vy from its average. In all cases stationary results
were obtained for T > 3 × 105.

In the first series of simulations, we studied the effect of the spring constant B, for fixed
values of the parameters D and Vg. Figure 3 shows some examples of molecule paths in the
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(a) (b)

Figure 3. Dumbbell trajectories for different spring constants. Paths of each bead of the dumbbell
were plotted separately with full lines and dotted lines, respectively. Values of the parameters
B,D and Vg are (a) B = 0.7, D = 0.01, Vg = 0.5 and (b) B = 0.06, D = 0.01, Vg = 0.5.
Beginning at the upper left corner the cells were numbered ij, i and j denoting rows and columns,
respectively. The inserted plot in the lower right corner is the single-bead velocity streamline.

cellular flow field, in which the trajectory of each bead was plotted separately. The parameters
used in the simulations are Vg = 0.5,D = 0.01, and two different values of the spring
constant: B = 0.7 and B = 0.06. In the figure, each cell is considered as the ij element of
a matrix. The inset, at the lower right corner, shows the single-bead velocity streamlines as
shown in figure 2.

It can be seen that the bead paths in figure 3(a) are closer than in figure 3(b). In both
paths shown in figure 3(a) the beads remain for some time in cell 2-2: they are trapped
in the corresponding trapping region of the single-bead velocity field. Due to stochastic jumps
the molecule is able to leave this region and continues to settle following open streamlines of
the single-bead velocity field. When the molecule reaches the cell 8-3 with a settling velocity
larger than Vg, it is trapped and the settling process is again interrupted. The sequence of fast
settling motion followed by trapping events is repeated all along its path. The main feature
of the molecule motion is determined by Vy(t), which averaged over a long time T, according
to equation (9), remains close to Vg. Accordingly, the molecule length remains much smaller
than the cell size. This effect is shown in figure 4(a), where the probability distribution of
molecule lengths for this set of parameters is plotted.

Figure 3(b) shows a very different behaviour. It is clear that the beads move in separate
paths. After they leave from the cells numbered 1-2 and 2-3, they are trapped in cells 2-2 and
2-3. Then, the beads settle out but later they are trapped together in the cell 4-2. Afterwards,
it can be seen that while one of the beads (dotted line) still remains in the cell 4-2 the other
evolves to the cell 6-2. Note that in this condition the molecule length is close to 2π . They
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(a) (b)

Figure 4. Dumbbell length distribution along a path for two sets of parameters: (a) B = 0.7, D =
0.01, Vg = 0.5 and (b) B = 0.06, D = 0.01, Vg = 0.5.

remain in this asymmetric situation until the bead in cell 4-2 leaves this location and settles out
until it reaches the other trapped bead. After this sequence, the beads settle out in separated
but almost parallel paths. In this example, the average settling velocity was found to be
considerably smaller than that in a fluid at rest, Vg . In agreement, figure 4(b) shows that
the probability distribution of molecule lengths spreads over distances larger than the cell size
and it exhibits local maxima. It will be shown in the next section that the reason for this
behaviour is the existence of a stable fixed point for values of the spring constant smaller than
a critical one. This fixed point occurs at some specific spatial locations in the cellular flow
field where the gravity force on each bead is balanced by the sum of the drag and the spring
forces. In such locations, if the Brownian force on each bead is small enough, the dumbbell
remains for a long time near the attractive basin of the fixed point until it is finally swept away
by the downflow. The slowing down of the dumbbell motion in the proximity of a fixed point
contributes thus to diminishing the average settling velocity to values smaller than Vg.

Figure 5 shows the variations in average settling velocity 〈V 〉 as the spring constant
increases from B = 0 to B = 1, and for Vg = 0.5 and for different values of D.

For D = 0.01 and D = 0.005 there is a significant reduction in the average settling
velocity near B = 0.08 which is more pronounced for decreasing values of D. The minimum
value of 〈V 〉 slightly depends on B. All curves approach asymptotically to Vg = 0.5 as B
increases.

It is interesting to remark that 〈V 〉 remains close to Vg even for values of the spring
constant as small as 0.5, indicating that the molecule behaves as a single particle while in
section 2 it was assumed that the molecule collapse occurs for B → ∞.

Figure 5 also shows the effect of the diffusion coefficient D on the dumbbell dynamics. It
was found that for some values of the diffusion coefficient the average settling velocity goes
to zero. This situation occurs in figure 5 for D = 0.001 where it can be seen that 〈V 〉 = 0
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Figure 5. Normalized dumbbell average settling velocity against B for Vg = 0.5: �,D = 0.05;◦, D = 0.01; �,D = 0.005; ×,D = 0.001.

Figure 6. Normalized dumbbell average settling velocity against B for D = 0.05: �, Vg = 1.25;◦, Vg = 1; �, Vg = 0.75; ×, Vg = 0.5.

for B in the range (0.01, 0.2). This behaviour is connected with the existence of fixed points
as was mentioned in a previous paragraph. When the diffusion coefficient D is sufficiently
small, the Brownian force is not enough to drive the dumbbell out of the influence zone of the
fixed point and the average settling velocity goes to zero.

The influence of the still fluid settling velocity, Vg, is shown in figure 6. It can be seen that
the average settling velocity 〈V 〉 tends to Vg as the spring constant increases. This behaviour is
observed for all the values of Vg investigated, either smaller or larger than Vg = 1, indicating
that for large B the molecule behaves as a single particle. The most remarkable fact is the
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maximum of 〈V 〉 that occurs for some values of Vg > 0.5. This maximum implies that the
molecule settles out faster than Vg, a phenomenon related to the ability of the molecule to
stretch and explore regions of downward flow, which will be described in more detail in the
following section.

4. Equilibrium points and stability

In the previous section, it was suggested that values of 〈V 〉 smaller than Vg or zero occur
due to the existence of certain equilibrium points (or fixed points) around which the molecule
moves for a long time. The stability analysis of these points provides an indication of whether
or not suspension of the molecule will occur. A dumbbell will be held fixed in the cellular
flow if the net force on each bead vanishes. From equations (5) equilibrium points of each
bead, located at (x1, y1) and (x2, y2), must satisfy the following conditions:

sin x1 cos y1 + B(x2 − x1) = 0 −sin y1 cos x1 + B(y2 − y1) + Vg = 0
(10)

sin x2 cos y2 − B(x2 − x1) = 0 −sin y2 cos x2 − B(y2 − y1) + Vg = 0.

In the above equations we have considered that equilibrium is determined by the balance
between drag, spring and gravity forces (the Brownian term is neglected).

Due to the fact that solving these transcendental equations is not an easy task, the complete
set of fixed points will be found by numerical integration of the system of equations (5) without
the Brownian term. We first calculated the trajectories for a large number of dumbbells located
at random initial positions in the square [0, 2π] × [0, 2π] and then analysed the dynamics in
the long-term regime (t → ∞).

In analysing the results we have found that dumbbell dynamics in the long-term regime
converges to three different kinds of paths. Indeed, we found that there is a fraction of the
dumbbells that moves in open paths along the downdraft region of the flow field, another
fraction moves in limit cycles with the two beads of the dumbbell in the same single cell and
a fraction of dumbbells remains at fixed points with both beads at rest in different cells of the
flow field.

When a dumbbell moves in a limit cycle or an open path the beads remain close to one
another and the molecule length, Q, varies in a range generally much smaller than the cell
length, π . In contrast, if the molecule is at a fixed point, the molecule length is fixed and
takes values that are generally of the order of the cell length, π . Thus, dumbbell trajectories
which converge to open or closed paths can be distinguished from those trapped in fixed points
because in the first case the dumbbell lengths will cover a continuous range of small separation
lengths, whereas in the second case the length remains constant. These statements are easily
verified in figures 7(a) and (b) where probability density functions for Q are shown for the
long-term behaviour of the ensemble of molecules. For example, in figure 7(b), which was
obtained for B = 0.08 and Vg = 0.5, it can be seen that the distribution has a continuous part
at the lowest range of lengths, Q 	 π , corresponding to molecule lengths which are in open
or closed paths. There is also a number of isolated peaks in the range of lengths comparable
to the cell size, which correspond to molecules located at fixed points. Similarly, figure 7(a),
obtained for B = 0.03 and Vg = 0.5, shows the same structure with two interesting differences
with respect to the preceding case: there is a larger number of peaks and the separation between
the continuous part and the discrete part is less pronounced.

Figures 7(a) and (b) show that the number of fixed points decreases as the spring constant
increases. The reason for this behaviour is that a dumbbell with a large spring constant is not
easy to stretch. Correspondingly, we expect that as B is increased some of the fixed points
cease to exist (for large values of B the molecule behaves as a single particle and in this
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(a)

(b)

Figure 7. Normalized probability density distribution of molecule lengths, Q, for an ensemble of
dumbbells in the long-term regime for Vg = 0.5 and D = 0.01: (a) B = 0.03 and (b) B = 0.08.

situation the only fixed points that occur are those shown in figure 2). Equation (10) shows
that the modulus of the product BQ is limited by the sum of the flow velocity and Vg . Thus,
if B is small, Q may take a greater range of values than for large B, that is, the dumbbell may
be stretched by the action of the flow field and gravity and, eventually, it will be able to reach
the points where the net force on both beads vanishes.

We note that the procedure used to compute the above distributions of lengths produces
only stable fixed points. A fixed point of the system obtained from equations (5) is considered
stable if the real part of all the eigenvalues evaluated at the fixed point is negative. The possible
values of the eigenvalues, λ, are the roots of the quartic polynomial

µ4 + A1µ
2 + A2 = 0 (11)

where

λ = µ − B

A1 = −z2
1 − z2

2 + w2
1 + w2

2 − 2B2

A2 = z2
1z

2
2 + w2

1w
2
2 − z2

1w
2
2 − w2

1z
2
2 + 2B2(w1w2−z1z2) + B4 (12)

zi = cos xi cos yi

wi = sin xi sin yi i = 1, 2.

The roots of the polynomial (11) depend on the coordinates of the beads at the fixed points
and in general the problem can only be solved numerically. However, let us now consider
a special case for which the fixed point may be easily obtained. Consider the beads of a
dumbbell oriented perpendicular to the gravity, at positions (x1, y1), (x2, y2) in the flow field,
such that the following relations hold:

x2 = 2π − x1 y1 = y2
(13)

0 < x1 < π 0 < y1 < 2π.
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Figure 8. Schematic view of the dumbbell at the equilibrium point defined by x2 = 2π − x1, y1 =
y2; < x1 < π, 0 < y1 < 2π . The balance between the drag, spring and gravity forces is indicated
by arrows on one of the beads.

A schematic view of the forces acting on one of the beads is shown in figure 8. The other
bead is in a symmetrical position with respect to the axis x = π . The gravity force is directed
downwards, the spring force is horizontal and the drag force has components opposed to both
the gravity and the spring forces. Under conditions (13) it is expected that an equilibrium of
forces is obtained for certain values of B and Vg . Introducing relations (13) in equations (10)
we have

sin x1 cos y1 + 2B(π − x1) = 0 −cos x1 sin y1 + Vg = 0. (14)

It is immediately obtained that the proposed equilibrium point exists only if

Vg < 1 and B < 1/π. (15)

Let us now investigate the stability of this fixed point. To determine the roots of the quartic
polynomial given in equation (11), the relations at the equilibrium points (equation (13)) are
substituted into the expressions for the coefficients (equation (12)). It is obtained that

λ = −B ±
√

(z1 ± B)2 − w2
1 . (16)

Equations (14) together with equation (16) can be used to obtain fixed points and their
stability as a function of B. Figure 9 summarizes the results for Vg = 0.5. The position of
one of the beads is plotted as it varies with B in the single-particle velocity field. As before,
the other bead is located in a symmetrical position with respect to the vertical line x = π .
For B → 0 three stable solutions for (x1, y1) can be obtained from equations (14): P1 =
(cos−1 Vg, π/2), P2 = (π − cos−1 Vg, 3π/2) and P3 = (0, sin−1 Vg). The corresponding
molecule lengths, Q = x2 − x1, are 2(π − cos−1 Vg), 2 cos−1 Vg and 2π , respectively. The
points P1 and P3 evolve with B as indicated by the arrows in figure 9 and they collapse for
B1 
 0.110. For B > B1, P1 and P3 disappear. The fixed point labelled P2 is stable from
B = 0 up to B2 
 0.271, then it becomes unstable. Alternatively, this evolution can be seen in
figure 10 where the molecule length of the three fixed points is plotted against the spring
constant. The largest real part of the eigenvalues is also plotted. It can be seen that it decreases
linearly with B (Re(λmax) = −B) but then it rapidly increases and becomes positive for



A single dumbbell falling under gravity 4303

Figure 9. Evolution with B of the fixed point defined by x2 = 2π − x1, y1 = y2; 0 < x1 < π, 0 <

y1 < 2π . Superposed streamlines correspond to the velocity field for a sedimenting single particle
in the cellular flow field: �, stable fixed points; ◦, unstable fixed points. The collapse between
the two stable fixed points on the upper branch occurs at B = 0.1100. Transition from a stable to
an unstable fixed point in the lower branch occurs at B = 0.2706.

Figure 10. Evolution of the fixed point defined by x2 = 2π − x1, y1 = y2; 0 < x1 < π, 0 < y1 <

2π . Left axis: dumbbell length as a function of B: ——, stable fixed points; - - - -, unstable fixed
points. Right axis: · · · · · ·, maximum real part of the eigenvalues, Re(λmax).

B 
 0.271. In summary, in the range 0 < B < B2 there are only stable fixed points. For
larger B the molecule cannot be trapped at fixed points of the type defined by equations (14).
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Figure 11. Left-hand side: dumbbell centre of mass position plot obtained by folding the whole
path to fit in the rectangle [0, π ] × [0, 2π ]. Right-hand side: centre of mass average trajectory
and flow streamlines. Note that the average trajectory runs through points of the flow with zero
vertical velocity. Parameters are B = 0.7, Vg = 1 and D = 0.05.

Other types of fixed points, where the molecule is not in a horizontal position, admit a similar
treatment.

We can now give a picture of what happens with the average settling velocity 〈V 〉 presented
in figure 5. First, figures 7 together with the preceding results clearly show that the number
of stable fixed points increases as B decreases. A molecule which moves in the vicinity of a
given fixed point has a probability of getting trapped, and this probability is measured by the
real part of λmax which is equal to −B. Thus, while the number of fixed points increases their
stability decreases (Re(λmax) = −B → 0). The average settling velocity results are smaller
than the still fluid settling velocity because the molecules are delayed when they are in the
zone of influence of a fixed point. But if B decreases further, approaching zero, the stability
of the fixed points drops and beads may escape more easily, thus the average settling velocity
increases again (for B = 0 the average settling velocity equals Vg).

Let us now briefly explain the maximum on the average settling velocity for Vg > 0.5,
presented in figure 6. For B = 0.7, the calculated value of 〈V 〉 is similar to Vg and for
B = 0.08, 〈V 〉 is larger than Vg and equal to the maximum value. Each of the dumbbell
trajectories for these two cases is folded to make it fit in the rectangle [0, π] × [0, 2π], and
the results plotted with dots in figures 11(a) and 12(a). This procedure is useful to visualize
in a single pattern of cell the space regions more frequently visited by the dumbbell as it
drifts downwards. So, in figure 11(a) it can be seen that the points are uniformly distributed
which means that there is no preference for dumbbells to travel through any special region.
In contrast, in figure 12(a) some accumulation of points around a sinuous path is observed
indicating some preference of the dumbbell to pass near such regions.
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(a) (b)

Figure 12. Left-hand side: dumbbell centre of mass position plot obtained by folding the whole
path to fit in the rectangle [0, π ] × [0, 2π ]. Right-hand side: centre of mass average trajectory.
Note that the average trajectory runs through points of the flow with positive vertical velocity.
Parameters are B = 0.08, Vg = 1 and D = 0.05.

In figures 11(b) and 12(b), we show the average dumbbell trajectory, (X(t), 〈Y ∗〉(t)),
where X is the coordinate of the centre of mass in the horizontal direction and 〈Y ∗〉 is the
averaged coordinate of the centre of mass in the vertical direction, calculated as

〈Y ∗〉 =
∫ π

0
Y ∗ dx (17)

where Y ∗ is the remainder of dividing Y (t) by the flow periodicity, 2π . It can be observed
that in the case B = 0.7 and Vg = 1, the average trajectory approximately corresponds to a
vertical line with X = 3/2π . Thus, the flow field evaluated along the dumbbell trajectory is
uy(3/2π, 〈Y ∗〉) = 0 and does not contribute to the dumbbell settling velocity which is equal
to Vg . In contrast, it can be seen that the average trajectory for B = 0.08 and Vg = 1 has a
sinuous shape and it explores spatial regions where the flow velocity uy(X, 〈Y ∗〉) > 0. Thus,
in this condition the flow contributes to enhancing the settling process making the dumbbell
have an average velocity larger than Vg.

5. Concluding remarks

The results of the preceding section show that the settling motion of a deformable body could
be influenced by its internal structure. Such a body was modelled here by the elastic dumbbell
consisting of two beads connected by a Hookean spring, a simple model which, in spite of
its simplicity, has been successfully used to reproduce several rheological properties of real
polymer chains.
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Using the elastic dumbbell we have shown that the molecule internal structure,
characterized here by the value of the spring constant, produces an overall dynamics which
presents phenomena such as hypo- or hypersedimentation, not observed for simple bodies
such as spherical particles. It was suggested that these properties are related to the ability
of polymers to store internal energy through stretching mechanisms. More precisely, it was
stated that stretching is the mechanism which facilitates the existence of fixed points. In this
work it was shown that the interaction of a molecule with the convective flow produces a set of
stable fixed points at which the molecule can remain trapped for some time. These fixed points
cause the average settling velocity to be smaller than that in a fluid at rest. Further, it was
found that for certain conditions the molecule is trapped indefinitely and the settling process
is interrupted. To further clarify the connection between fixed points and settling velocity, we
investigated the fixed points in detail. We found that the number of fixed points depends on
the spring constant. Specifically, we found that the number of fixed points decreases, but their
stability increases, with the spring constant. Thus, fixed points and their stability together
determine the average velocity of the settling molecules. We then focused on one of the fixed
points and studied it in detail. We have shown that fixed points disappear for sufficiently large
values of Vg . Under this condition, the molecule can no longer get trapped and it is able to
settle down. Nevertheless, for low enough spring constants the molecule stretches and the
beads can visit regions of downflow velocities where the molecule settles down faster. This
phenomenon contributes to increasing the average settling velocity to values larger than Vg.
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